# Lattice Patterns in Ornamental Turning

## Indian marble latticework



## Antique quilt



## Arthur's waistcoat (that dapper devil!)



Rectangular lattice pattern using an Archie 4 rosette



## Lattice Pattern in Ornamental Turning

- A pattern of overlapping rosette profiles in a rectangular or hexagonal (honeycomb) array
- Technique developed by Christian Lindow at the Plumier Foundation
- Not aware of any similar ornamental turning work done in the past

## **Optical Illusion**

Rosette profiles disappear and a new pattern emerges



#### A Simple 8-lobe Rosette



A pair of overlapping rosettes



### Adding a third rosette



## And now the fourth rosette



#### A 5 x 5 rectangular array



## Edges of the array trimmed off



#### A round excerpt from the array in contrasting colors



## <u>Rectangular array – basic form</u>

- Map for rectangular lattice pattern
- Rows of base circles around a central base circle
- Centers of base circles will be the centers of overlapping rosette profiles
- Base circles don't appear in lattice pattern



## Hexagonal array – basic form

Rows of base circles surrounding central circle to form a hexagonal "honeycomb" pattern



## The Challenge

- Create a regular pattern using overlapping copies of a single rosette profile
- Determine the appropriate size and density of the lattice pattern
- Calculate the correct geometric relationships among the rosette profiles in the pattern
- Maintain OT level of accuracy
- Accomplish the pattern with available OT equipment

#### Christian's Double Eccentric Chuck

- Two slides capable of eccentric movement
- Christian uses a Cartesian (X and Y coordinates) approach to mapping the pattern elements
- A lovely, but somewhat rare piece of kit!



#### <u>Plan B</u>

- Traditional single slide eccentric chuck with a worm wheel on the nose for angular adjustments
- Can map base circle pattern using polar coordinates!



### Required:

- Rosette with lobe count divisible by 4 (for rectangular pattern) or 6 (for hexagonal pattern)
- Eccentric chuck with worm wheel
- Worm wheel for phasing rosette barrel
- Tool slide

## Polar Coordinates

Locate point (the base circle center) by:

- Setting angle from 0 degree line (use worm wheel on eccentric chuck)
- Set distance from origin (use slide on eccentric chuck)



| Polar Coordinates       |                 |                   |
|-------------------------|-----------------|-------------------|
| Base Circle Dia.: 1.0   |                 | $\langle \rangle$ |
| Tool Slide set at 0.500 |                 |                   |
| Angular                 | Eccentric Chuck |                   |
| <u>Settings</u>         | <u>Settings</u> |                   |
| 0                       | 1.000           |                   |
| 45                      | 1.414           | 1.000"            |
| 90                      | 1.000           |                   |
| 135                     | 1.414           | 1.9,19,1          |
| 180                     | 1.000           |                   |
| 225                     | 1.414           |                   |
| 270                     | 1.000           |                   |
| 315                     | 1.414           |                   |

# Rectangular array with 3 Rows

- Note repeating pattern of linear distances occurring in each row
- All angles easily calculated using simple trigonometry
- Use linear distances and related angles to map centers of base circles with polar coordinate approach
- Centers now established for rosette profiles



#### Single Base Circle

- Pattern density wide open, tightly detailed, or something in between is determined largely by the size you select for the base circle diameter.
- Need to decide how much the rosette profile will overlap the base circle



## Points of Intersection

- Any amount of overlap can be used
- Amount of rosette profile overlap is suggested by base circle size



### Calculation of Tool Slide Setting for <u>Rectangular array</u>

- Objective: Rosettes overlapping the base circles and intersecting at the center of the open space in the pattern.
- It's not required that the intersection of the rosettes be where shown, but the distance to the center of the void is a logical place to try the first tool slide setting.



When your rosette is a simple circle with no lobes, the pattern of intersections would look like this.



## Initial positioning of the rosette

Touch needs to be on a high point of the rosette profile

Set chuck level to lathe bed, then adjust rosette/touch relationship using worm on rosette barrel









## **Illustration of Angular Adjustments**

#### Uncompensated



#### Compensated



### <u>Steps</u>

- Center tool, then set radius of rosette profile on tool slide (this setting does not change)
- With chuck level to lathe bed, use rosette worm wheel to set touch on high point of rosette profile.
- 1. Set eccentricity on chuck slide, per table.
- 2. Set angle with worm on chuck spindle nose, per table.
- 3. Phase rosette an equal angle in opposite direction, per table.

## **Rectangular array**

Settings for eccentric chuck slide



<u>1<sup>st</sup> step</u>

- Put tool on center
- Set tool slide to rosette radius of .707"
- Make first cut to establish center profile of array



<u>**Row 1**</u>: For rectangular array with 1.000" diameter base circles, tool slide radius set to .707"

| Eccentric Chuck | Eccentric Chuck   | Worm Wheel       |
|-----------------|-------------------|------------------|
| <u>Slide</u>    | <u>Worm Wheel</u> | <u>On Barrel</u> |
| 1.000           | 0                 | 0                |
| 1.414           | 45                | -45              |
| 1.000           | 90                | -90              |
| 1.414           | 135               | -135             |
| 1.000           | 180               | -180             |
| 1.414           | 225               | -225             |
| 1.000           | 270               | -270             |
| 1.414           | 315               | -315             |

## 2<sup>nd</sup> Step

First table entry for Row 1 is 1.000" at 0°, so:

- Move eccentric chuck slide from 0 to 1.00"
- No change to angle settings



#### Next Steps

- A couple more iterations from the table show the pattern emerging.
- Note how the base circle centers (the grid) control the placement of the rosette profiles.



## First row completed



### First row with base circle grid removed



### First row with border trimmed away



#### Just for fun!

Our pattern expanded to three rows on a circular work piece



Eccentric Chuck Settings for a Hexagonal Matrix with 1.000" Diameter Base Circles



#### Calculation of Tool Slide Setting for Hexagonal array

To have rosette profiles intersect at center of the void, the tool slide setting is .577" for a 1.000" diameter base circle



# Let's look at a hexagonal array

- We'll use this 18 lobe rosette. With its lobe count divisible by 6, it should work
- Set tool slide to .577" and cut rosette profile on center of work piece



#### **<u>Row 1</u>**: For hexagonal array

| Eccentric Chuck | Eccentric Chuck   | Worm Wheel       |  |
|-----------------|-------------------|------------------|--|
| <u>Slide</u>    | <u>Worm Wheel</u> | <u>On Barrel</u> |  |
| 1.000           | 0                 | 0                |  |
| 1.000           | 60                | -60              |  |
| 1.000           | 120               | -120             |  |
| 1.000           | 180               | -180             |  |
| 1.000           | 240               | -240             |  |
| 1.000           | 300               | -300             |  |

## First row completed



# Second row complete



#### Two rows completed with base circle grid removed



#### Hexagonal pattern trimmed



#### Good News!

• The angles for rectangular and hexagonal arrays remain the same, regardless of the base circle size you choose.

#### More Good News!

- Tool slide and eccentric chuck slide settings are directly proportional to the size of the base circle chosen. Settings for a 1" base circle can be multiplied by any chosen base circle size to get the new slide settings.
- For example, to get the settings for a .400" base circle array, multiply the 1.00" tool slide and eccentric chuck slide settings by .400.

#### The Best News Yet!

- We have provided you with tables of both the angles and the eccentric slide settings for 1.00" base circle rectangular and hexagonal arrays of up to 3 rows.
- These are constants that can be multiplied by any factor you choose for the size of the base circles in your array.
- The tool slide settings, .707 for a rectangular array and .577 for a hexagonal array, are also a constant that can be multiplied by your chosen factor

| Eccentric Ch          | nuck Angula | ar Settings | Eccentric Ch          | nuck Slide Se | ettings |  |
|-----------------------|-------------|-------------|-----------------------|---------------|---------|--|
| For Rectangular Array |             | For Rectang | For Rectangular Array |               |         |  |
| Row 1                 | Row 2       | Row 3       | Row 1                 | Row 2         | Row 3   |  |
| 0                     | 0           | 0           | 1                     | 2             | 3       |  |
| 45                    | 26.6        | 18.4        | 1.414                 | 2.236         | 3.162   |  |
| 90                    | 45          | 33.7        | 1                     | 2.828         | 3.606   |  |
| 135                   | 63.4        | 45          | 1.414                 | 2.236         | 4.243   |  |
| 180                   | 90          | 56.3        | 1                     | 2             | 3.606   |  |
| 225                   | 116.6       | 71.6        | 1.414                 | 2.236         | 3.162   |  |
| 270                   | 135         | 90          | 1                     | 2.828         | 3       |  |
| 315                   | 153.4       | 108.4       | 1.414                 | 2.236         | 3.162   |  |
|                       | 180         | 123.7       |                       | 2             | 3.606   |  |
|                       | 206.6       | 135         |                       | 2.236         | 4.243   |  |
|                       | 225         | 146.3       |                       | 2.828         | 3.606   |  |
|                       | 243.4       | 161.6       |                       | 2.236         | 3.162   |  |
|                       | 270         | 180         |                       | 2             | 3       |  |
|                       | 296.7       | 198.4       |                       | 2.236         | 3.162   |  |
|                       | 315         | 213.7       |                       | 2.828         | 3.606   |  |
|                       | 333.4       | 225         |                       | 2.236         | 4.243   |  |
|                       |             | 236.3       |                       |               | 3.606   |  |
|                       |             | 251.6       |                       |               | 3.162   |  |
|                       |             | 270         |                       |               | 3       |  |
|                       |             | 288.4       |                       |               | 3.162   |  |
|                       |             | 303.7       |                       |               | 3.606   |  |
|                       |             | 315         |                       |               | 4.243   |  |
|                       |             | 326.3       |                       |               | 3.606   |  |
|                       |             | 341.6       |                       |               | 3.162   |  |

| Eccentric Chuck Angular Settings |          | Eccentric C | Eccentric Chuck Slide Settings |                     |       |  |
|----------------------------------|----------|-------------|--------------------------------|---------------------|-------|--|
| for Hexagon                      | al Array |             | for Hexago                     | for Hexagonal Array |       |  |
| Row 1                            | Row 2    | Row 3       | Row 1                          | Row 2               | Row 3 |  |
| 0                                | 0        | 0           | 1.000                          | 2                   | 3     |  |
| 60                               | 30.0     | 19.1        | 1.000                          | 1.732               | 2.646 |  |
| 120                              | 60.0     | 40.9        | 1.000                          | 2                   | 2.646 |  |
| 180                              | 90.0     | 60.0        | 1.000                          | 1.732               | 3     |  |
| 240                              | 120.0    | 79.1        | 1.000                          | 2                   | 2.646 |  |
| 300                              | 150.0    | 100.9       | 1.000                          | 1.732               | 2.646 |  |
|                                  | 180.0    | 120.0       |                                | 2                   | 3     |  |
|                                  | 210.0    | 139.1       |                                | 1.732               | 2.646 |  |
|                                  | 240.0    | 160.9       |                                | 2                   | 2.646 |  |
|                                  | 270.0    | 180.0       |                                | 1.732               | 3     |  |
|                                  | 300.0    | 199.1       |                                | 2                   | 2.646 |  |
|                                  | 330.0    | 220.9       |                                | 1.732               | 2.646 |  |
|                                  |          | 240.0       |                                |                     | 3     |  |
|                                  |          | 259.1       |                                |                     | 2.646 |  |
|                                  |          | 280.9       |                                |                     | 2.646 |  |
|                                  |          | 300.0       |                                |                     | 3     |  |
|                                  |          | 319.1       |                                |                     | 2.646 |  |
|                                  |          | 340.9       |                                |                     | 2.646 |  |

### Variations On A Theme Some Examples of Lattice Patterns

### Simple line



#### Deep Cut



#### **Fine Detail**



#### **Gold Filled**



# Colored background



### Stepped Cutter

